

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4 2 1 5 2 0 5 7 9 1

CO-ORDINATED SCIENCES

0654/42

Paper 4 Theory (Extended)

May/June 2023

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 is a diagram of parts of the eye.

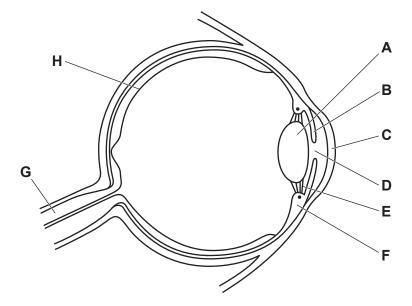


Fig. 1.1

(i)	State the letter in Fig. 1.1 wh	nich identifies the part that contains:	
	circular and radial muscles		
	receptor cells		
	neurones.		[3]
(ii)	Draw an X on Fig. 1.1 to ide	ntify the position of the blind spot.	[1]
(iii)	Describe the changes to the focus from a near object to a	e parts labelled A , E and F when someone a distant object.	changes their
	A		
	E		
	F		[3]
(iv)	State the name of the hormofight or flight' situation.	one that causes part D in Fig. 1.1 to widen in	
			[1]

(b)	Accommodation of the eye is an example of sensitivity.	
	Complete the sentence to describe the term sensitivity.	
	Sensitivity is the ability to detect or sense	,
	which are changes in the internal or external	
	and to make appropriate responses.	[2]

2 Alkanes are saturated hydrocarbor

(a)	State what is meant by the term saturated hydrocarbon.
	[2]
(b)	Alkenes are also hydrocarbons.
	Table 2.1 shows information about three alkenes.
	Complete Table 2.1.

Table 2.1

name	molecular formula	structure
	C_2H_4	H C=C H
propene	C ₃ H ₆	
	C_4H_8	H H H H H H-C=C-C-C-H H H

[3]	
r - 1	

(c) Propane and propene are both colourless gases.

Describe a test to show which gas is propane and which gas is propene.

result with propane			
result with propene			

[3]

(d) The monomer $\mathrm{C_4H_8}$ in Fig. 2.1 can be used to make a polymer.

Fig. 2.1

Complete Fig. 2.2 to show the structure of the polymer made.

[2]

[Total: 10]

3 Fig. 3.1 shows an insect called a pond skater.

Pond skaters spread their weight over their 6 legs so that they can move over the surface of water.



Fig. 3.1

- (a) The pond skater has a mass of 0.25 g and is stationary on the surface of the water.
 - (i) Use the values in the list to complete the sentences about the pond skater.

The gravitational field strength, g, is 10 N/kg.

You can use each value once, more than once or not at all.

0 N	0.0025 kg	0.0025 N	0.25 g	0.25 kg	2.5 N
The weight	of the pond skater i	s			
The force a	cting upwards on th	e pond skater by t	he water is		
The resulta	nt force acting on th	e pond skater is			[2]

(ii) The pond skater stands on all 6 legs, with the foot of each leg making contact with the surface of the water.

The area of each foot is $1.2 \times 10^{-7} \,\mathrm{m}^2$.

Calculate the pressure exerted by each foot on the surface of the water.

pressure = Pa [2]

(b) The pond skater moves across the surface of a pond.

Fig. 3.2 shows a speed-time graph for part of the pond skater's journey.

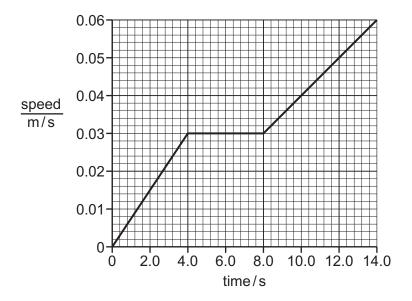


Fig. 3.2

- (i) Place an X on Fig. 3.2 to show a time at which the pond skater is travelling at a constant speed.[1]
- (ii) Use Fig. 3.2 to calculate the maximum acceleration of the pond skater.

acceleration = m/s² [2]

(c) The movement of the pond skater on the surface of the water produces waves.

Fig. 3.3 shows a diagram of a wave produced by the pond skater.

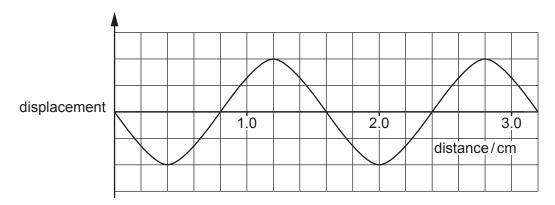
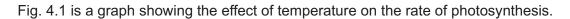


Fig. 3.3

(i) Use Fig. 3.3 to determine the wavelength of the water wave in m.

wavelength =	m	[2]	I
		L	

(ii) An observer sees 10 full waves pass a point in 5 seconds.


Use your answer to (c)(i) to calculate the speed of the wave.

speed =m/s [3]

[Total: 12]

BLANK PAGE

4 (a) Photosynthesis is an enzyme-controlled reaction.



Fig. 4.1

(i)	Explain the results between 0–30 °C in Fig. 4.1.
(ii)	Explain the result at 40 °C in Fig. 4.1.
	[3]
	te the name of the substance that converts light energy to chemical energy during tosynthesis.
	[1]

© UCLES 2023 0654/42/M/J/23

(b)

(c)	State the names of the two raw materials used in photosynthesis.
	1
	2[2]
(d)	Describe two ways the cells in the palisade mesophyll layer are adapted for photosynthesis.
	1
	2
	[2]
	[Total: 10]

5 Ammonia is made from the reaction of nitrogen and hydrogen in the Haber presented in t	JI UUUSS.
---	-----------

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

(a) State the sources of the nitrogen and hydrogen used in the Haber process.

(b) Fig. 5.1 shows the energy level diagram for the reaction between nitrogen and hydrogen.

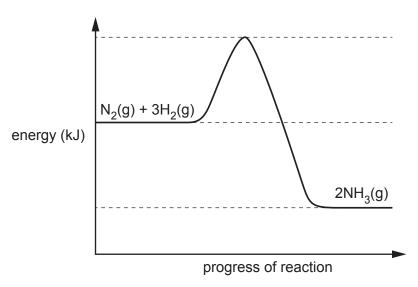


Fig. 5.1

(i)	Draw an arrow on Fig. 5.1 to show the energy change in the reaction.

Label your arrow **A**. [1]

(ii) Draw an arrow on Fig. 5.1 to show the activation energy of the reaction.

Label your arrow **B**. [1]

(iii) Explain if Fig. 5.1 represents an exothermic or endothermic reaction.

Use ideas about bond breaking and bond making in your answer.

(c) 58.8 kg of nitrogen gas reacts with hydrogen gas to make 142.8 kg of ammonia	(c)
--	-----

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

Calculate the volume occupied by 142.8 kg of ammonia gas.

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

volume of ammonia gas = dm³ [3]

[Total: 11]

6 (a) Fig. 6.1 shows the average power output over a summer's day from a solar panel made from solar cells.

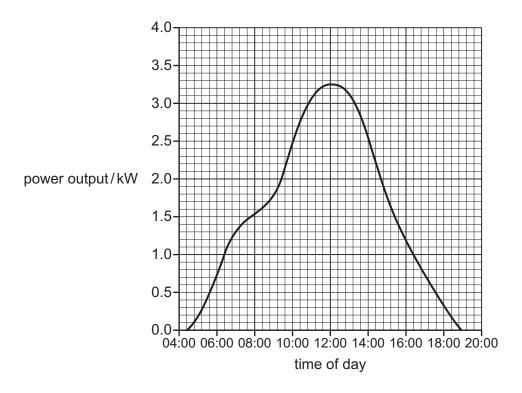


Fig. 6.1

(i)	State the time at which the power output of the solar panel is at its maximum.	
	time of day	[1]

(ii)	Suggest one	reason	why t	the	power	output	of	the	solar	panel	is	at	а	maximum	at	this
	time.															

[1]
 [,]

(b) Table 6.1 gives some data about different types of power stations.

Table 6.1

power station	fuel	efficiency /%	output voltage /kV	output power /MW
Р	coal	30	22	1500
Q	natural gas	40	31	1000
R	uranium	30	23	1300

Use Table 6.1 to complete each sentence.

Each letter, **P**, **Q** or **R**, can be used once, more than once or not at all.

The power station that produces the least carbon dioxide is power station

The power station that releases the most energy per second is power station

The power station with the generator that produces the largest current is power station

[2

(c) Power stations use transformers to increase the output voltage.

Fig. 6.2 shows a simple transformer.

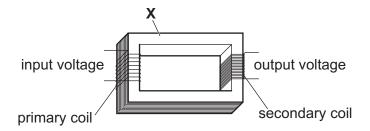


Fig. 6.2

(i)	State the name of the part of the transformer labelled X .	
		[1]
(ii)	Describe how the output voltage across the secondary coil is produced.	
		[3]
(iii)	Fig. 6.2 shows a step-up transformer containing 8 turns in the primary coil and 17 turns in the secondary coil.	ırns
	The input voltage across the primary coil is 22 kV.	
	Calculate the output voltage across the secondary coil.	

output voltage =kV [2]

[Total: 10]

BLANK PAGE

7 (a) Fig. 7.1 shows a food web.

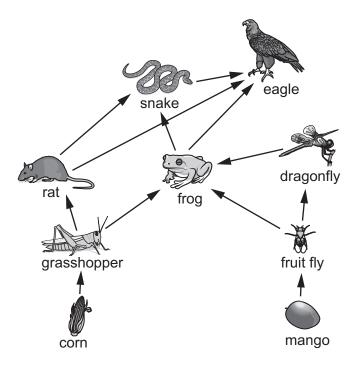


Fig. 7.1

(1)	ose the information in Fig. 7.1 to state the name of one.	
	herbivore	
	quaternary consumer	
	organism that occupies the first trophic level.	
		 [3]
		[~]
(ii)	State three ways that energy is lost between trophic levels.	
	1	
	2	
	3	
		[3]
(iii)	State the principal source of energy for all biological systems.	
		[1]

(b) Fertilisers are sometimes used to improve the growth of crop plants.

Exc	cessive use of fertilisers pollutes rivers.
(i)	Explain why this pollution increases the growth of producers in rivers.
	[2]
(ii)	Explain how death of producers in rivers reduces the oxygen concentration in the water.
()	
	[2]
	[Total: 11]

8 (a) Copper has two isotopes, copper-63 and copper-65.

Table 8.1 shows information about copper-63 and copper-65.

Complete Table 8.1.

Table 8.1

isotope	proton (atomic) number	nucleon (mass) number	protons	neutrons	electrons
copper-63	29	63	29	34	
copper-65	29	65			29

[3]

(b) Complete the sentence to describe what is meant by isotopes.

Choose words from the list.

compound electron element group nucleon nucleus proton

Isotopes are atoms of the same		which	have	the	same
	. number but a different				
number.					[3]

(c) An element is in Group II and Period 3 of the Periodic Table.

Predict the electronic structure of this element.

Tick (✓) one box.

2.3	
2.2.3	
2.8.2	
2.8.3	

[1]

(d) Complete Fig. 8.1 to show the covalent bonding in a molecule of nitrogen, N_2 .

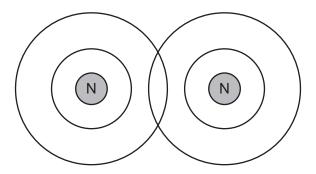


Fig. 8.1

[2]

(e) The element nitrogen is covalently bonded.

The melting point of nitrogen is –210 °C.

Calcium nitride, $\operatorname{Ca_3N_2}$, is an **ionic** compound.

The melting point of calcium nitride is 1195 °C.

Explain the difference in melting points in terms of attractive forces.	
[21
I	۱-

[Total: 11]

- **9** A student investigates series and parallel circuits using filament lamps.
 - (a) Fig. 9.1 shows the first circuit the student makes using three identical filament lamps.

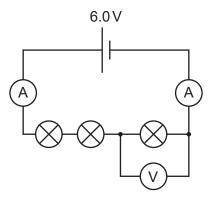


Fig. 9.1

(i) Determine the potential difference shown on the voltmeter.

	potential difference =V [1]
(ii)	Explain why the reading on both ammeters is the same.
	F.4
	[1]

(b) Fig. 9.2 shows the second circuit made by the student using the same three identical filament lamps.

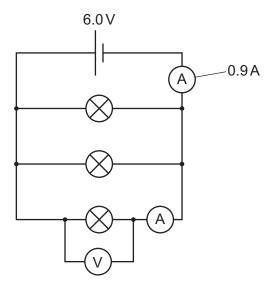


Fig. 9.2

	One of the ammeters shows a current of 0.9A as shown in Fig. 9.2.			
	The voltmeter shows a potential difference of 6.0 V.			
	Calculate the resistance of one of the filament lamps.			
	resistance = Ω [3]			
(c)	The filament lamps emit energy in the form of infrared radiation and visible light.			
	Complete the sentences to compare infrared radiation with visible light.			
	Infrared radiation and visible light are both parts of the			
	The wavelength of infrared radiation is than the			
	wavelength of visible light.			

The frequency of infrared radiation is than the frequency

The speed of infrared radiation and visible light is

of visible light.

[Total: 7]

[2]

10 (a) Fig. 10.1 is a diagram of a sperm cell in humans.

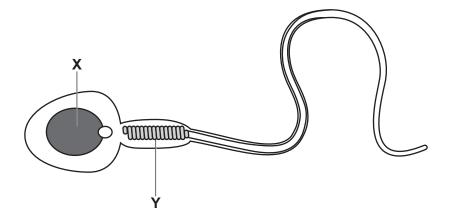


Fig. 10.1

(i)	Cell structure X contains unpaired chromosomes.	
	State the two words used to describe cell structure X in Fig. 10.1.	
		[2]
(ii)	State the number of chromosomes in cell structure X in Fig. 10.1.	
		[1]
(iii)	Mitochondria are the site of aerobic respiration.	
	Suggest why part Y in Fig. 10.1 contains many mitochondria.	
		[2]

(b) Table 10.1 compares some of the features of asexual reproduction and sexual reproduction.

Place ticks (\checkmark) in the boxes in Table 10.1 to show the correct features of asexual reproduction and sexual reproduction.

Table 10.1

	asexual reproduction	sexual reproduction
involves formation of a zygote		
no genetic variation		
involves production of offspring		

		[2]
c)	Describe two disadvantages of sexual reproduction.	
	1	
	2	
		[2]
	[Tota	l: 9]

11 Electrolysis is the breakdown of an ionic compound, when molten or in aqueous solution, by the passage of electricity.

The products of electrolysis of some aqueous solutions, using inert electrodes, are shown in Table 11.1.

Table 11.1

aqueous solution	product at anode	product at cathode
copper chloride		copper
magnesium sulfate	oxygen	
sodium bromide	bromine	hydrogen

			, , , ,	
(a)	Part of the reactive	vity series, from most reactive to lea	st reactive, is shown.	
	sodium magnesium (hydrogen) copper			
	Use this informat	ion to complete Table 11.1.		[2]
(b)	State why hydro aqueous sodium	gen forms at the cathode, rather bromide.	than sodium, during the elec	ctrolysis of
				[1]
(c)	Copper is formed	I at the cathode in the electrolysis o	f aqueous copper chloride.	
	Construct the ion	ic half-equation for the formation of	copper at the cathode.	
				[2]

(d)	Aqueous copper(II) sulfate is electrolysed using inert electrodes. Oxygen gas is formed at the anode. Copper metal is formed at the cathode.			
	(i)	The ionic half-equation for the formation of oxygen gas at the anode is shown.		
		$4\mathrm{OH^-} \rightarrow 2\mathrm{H_2O} + \mathrm{O_2} + 4\mathrm{e^-}$		
		State if this reaction is oxidation or reduction.		
		Explain your answer using ideas about electrons.		
		[1]		
	(ii)	The experiment is repeated using copper electrodes instead of inert electrodes.		
		Describe what happens at the anode and the cathode using copper electrodes.		
		anode		

cathode

[2]

[Total: 8]

12 (a) Table 12.1 shows information about three types of ionising radiation.

Table 12.1

type of ionising radiation	nature of radiation	relative ionising effect	relative penetrating ability
alpha		high	
beta	fast-moving electron	medium	medium
gamma	electromagnetic radiation	low	

(i) Complete Table 12.1.

[2]

(ii) Fig. 12.1 shows the path taken by a beta particle as it moves through an electric field.

Complete Fig. 12.1 to show the paths taken by alpha particles and gamma rays as they pass through an electric field.

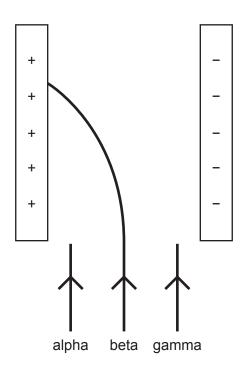


Fig. 12.1

[2]

(b) Beta particles are released when carbon-14 $\binom{14}{6}$ C) decays into an isotope of nitrogen.

	Use	the correct nuclide notation to complete the decay equation for carbon-14.	decay equation for carbon-14.		
		$^{14}_{6}C \rightarrow \dots N + \dots \beta$			
			[2]		
(c)	At r	oom temperature, nitrogen is a gas, water is a liquid and carbon is a solid.			
	(i)	Explain why a gas can be compressed and a solid cannot be compressed.			
			[1]		
	(ii)	Suggest if water can be compressed.			
		Give a reason for your answer.			
			[1]		
	(iii)	A sample of nitrogen gas is held in a container with a fixed volume.			
		The temperature of the nitrogen is increased.			
		Explain the effect that increasing the temperature of the gas has on the pressure in gas.	the		
		Use ideas about molecules in your answer.			

[Total: 11]

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

=	2 :	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon	98	R	radon	118	Og	oganesson
=																					
5																					E
>	_			7	z	nitrogen 14	15	<u>_</u>	hosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	: <u>ā</u>	bismuth 209	115		_
2																					
=				2	М	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lΤ	thallium 204	113	R	nihonium —
										30	Zu	zinc 65	48	В	cadmium 112	80	운	mercury 201	112	5	opernicium
																					r.
	- :	I	hydrogen 1							26	Ьe	iron 56	4	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					<u></u>					24	ပ်	chromium 52	42	Mo	nolybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
			Key	mic number	ic symbo	name re atomic mass															
				atc	aton	relativ				22				Zr	zirconium 91	72	士	hafnium 178	104	弘	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium —
_				3	:-	lithium 7	#	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	ᇁ	francium -
	IIA IA AI			1 III IV V VII VIII Hydrogen 1 1 1 V V VII VIII	III IV V VI VII	II	II	III IV V VII VIII VIII	III	III	II	II	III IV VI VII VII	II	III IV V VI VII VI	11 17 17 17 17 17 17 17	11 1 1 1 1 1 1 1 1	11 11 12 14 14 14 14 14	1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1	Harmonian Harm

_			_			
71	Γn	lutetium 175	103	۲	lawrencium	I
70	Υp	ytterbium 173	102	9	nobelium	_
69	T	thulium 169	101	Md	mendelevium	1
89	Щ	erbium 167	100	FB	ferminm	1
29	운	holmium 165	66	Es	einsteinium	1
99	۵	dysprosium 163	86	ರ	californium	ı
65	Д	terbium 159	6	番	berkelium	-
64	Вg	gadolinium 157	96	Cm	cunum	-
63	En	europium 152	92	Am	americium	1
62	Sm	samarium 150	94	Pu	plutonium	I
61	Pm	promethium -	93	ď	neptunium	ı
09	PN	neodymium 144	92	\supset	uranium	238
69	Ā	praseodymium 141	91	Ра	protactinium	231
58	Se	cerium 140	06	드	thorium	232
22	Гa	lanthanum 139	89	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).